TD : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

TD : PROGRAMMATION DYNAMIQUE
== DISTANCE DE LEVENSHTEIN ==

Remarque : les rappels théoriques sont en derniére page de ce sujet.

Le fichier source a utiliser pour ce TD est : « TD4 — Levenshtein.py »

Vous développez un mini-correcteur orthographique. Le principe est le suivant :

- L'utilisateur tape un mot (potentiellement mal orthographié) ;

- On compare ce mot a chaque mot d'un dictionnaire de mots corrects ;

- On calcule la distance d'édition (distance de Levenshtein) entre le mot tapé et
chaque mot du dictionnaire ;

- Onsuggere le mot du dictionnaire le plus proche (distance minimale) ;

- On affiche les opérations de correction pour transformer le mot erroné en mot
correct.

Exemple : L'utilisateur tape "ALGORYTME". Le correcteur compare ce mot au dictionnaire et
trouve que "ALGORITHME" est le mot le plus proche (distance = 2). Il suggere alors la
correction avec les opérations : substituer 'Y' par 'l' et insérer 'H'.

L'objectif de ce TD est d'implémenter les algorithmes de programmation dynamique
(approches bottom-up et top-down) pour calculer la distance d'édition, trouver le mot le
plus proche, puis reconstruire la suite d'opérations de correction. Vous utiliserez des
dictionnaires Python pour mémoriser les résultats des sous-problémes.

1) APPROCHE BOTTOM-UP (TABULATION)

Dans cette partie, vous allez implémenter I'approche bottom-up qui remplit une table de
tous les sous-problemes, des plus petits aux plus grands. On utilisera un dictionnaire D pour
stocker les valeurs D[(i, j)] représentant la distance d'édition entre les i premiers caracteres
de S1 et les j premiers caractéeres de S2.

Les données sont déja définies dans le fichier source :
mot_utilisateur = "camiont"
dictionnaire = ["camion","camions","canon","cation","canton","camionne"]
D = {} # Table de mémoisation

1. Ecrire une fonction initialiser_cas_de_base(S1, S2, D) quiinitialise et retourne le
dictionnaire D avec les cas de base.

Tester : >>> initialiser_cas_de_base("tu","toi",D)
{0, 0): 0, (1, 8): 1, (2, 8): 2, (0, 1): 1, (8, 2): 2,
(0, 3): 3}

2. Ecrire une fonction remplir_table(S1, S2, D) quiremplit entiérement la table D en
utilisant I'équation de récurrence (voir rappels a la fin du sujet). L'ordre de parcours est :
pouriallantde 1 an, et pour chaquei, jallantde 1 a m.

TD : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

Vérifier : S1 = "ALGORYTME"
S2 = "ALGORITHME"
D = {}
D = initialiser_cas_de_base(S1,S2,D)
D = remplir_table(S1,S2,D)

AfficheTable(S1,S2,D)

Préfixe S2

Préfixe S1
I

3. Ecrire une fonction distance_levenshtein_bottomup(S1, $2) qui utilise les fonctions
précédentes pour calculer et retourner la table D et la distance d'édition entre S1 et S2.

Tester : >>> S1 "ALGORYTME"
>>> §2 "ALGORITHME"
>>> D, distance = distance_levenshtein_bottomup(S1,S2)
>>> print(distance)
2

4. Ecrire une fonction trouver_mot_proche (mot_utilisateur, dictionnaire) qui
parcourt tous les mots du dictionnaire, calcule la distance avec le mot de |'utilisateur, et
retourne le ou les mots les plus proches ainsi que la distance minimale.

Tester : >>> trouver_mot_proche(mot_utilisateur,dictionnaire)
(['camion', 'camions'], 1)

5. Combien de sous-problémes sont calculés dans I'approche bottom-up pour comparer
deux chaines de longueurs n et m ? Quelle est la complexité temporelle et spatiale de cet
algorithme ?

TD : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

1) APPROCHE TOP-DOWN AVEC MEMOISATION

Dans cette partie, vous allez implémenter |'algorithme récursif avec mémoisation. L'idée est
de partir du probléme principal D[(n, m)] et de le décomposer en sous-problémes, en
mémorisant les résultats pour éviter les calculs redondants.

On utilisera un dictionnaire défini dans le programme principal pour la mémoisation : D = {}

1. Ecrire une fonction récursive rec_levenshtein(S1, $2, D) quiimplémente la
récurrence rappelée a la fin du sujet. Voici un exemple que vous pouvez suivre si vous le
souhaitez :

D = {}

def rec_levenshtein(S1,S2,D):
ns=...
m= ...

def f_rec(di,j):
Utilise 1la mémoisation
if ... in D:
return ...

Cas de bhase
if i == 0:
DI(i,3)]
return ...
if j == 0:
DI(i,3)]

return ...

Test si match
if oo
DLCLi,)] = covvvvninn.

return

Sinon, calcule les trois autres possibilités
else:

Vi = i

V2 = e

V3 = i e

Mémoise et retourne la valeur optimale

DLCL,)] = voveeieeennn.
return D[(i,3)]

distance = f_rec(n,m)
return distance

Tester : S1 = "ALGORYTME"
S2 = "ALGORITHME"
>>> pec_levenshtein(S1,52,D)
2

TD : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

Vérifier la table : >>> AfficheTable(S1,S2,D)

Préfixe S2

Préfixe S1
I~

2. Comparez les tables obtenues avec les approches bottom-up et top-down (optimisée).
Pourquoi I'approche top-down optimisée calcule-t-elle moins de sous-problémes ? Dans
quel cas cette différence serait-elle plus marquée ?

3. Quelle est la complexité temporelle de |'algorithme top-down avec mémoisation dans le
pire cas ? Quelle est la complexité spatiale (dictionnaire + pile d'appels) ?

I1) RECONSTRUCTION DE LA SOLUTION

Maintenant que nous savons trouver le mot le plus proche et calculer la distance d'édition,
nous devons expliquer a l'utilisateur comment corriger son mot. Cette étape s'appelle la
reconstruction de la solution.

La reconstruction consiste a « remonter » dans la table D depuis D[(n, m)] jusqu'a D[(O, 0)]
pour déterminer, a chaque étape, quelle opération a été effectuée (voir les rappels a la fin
du sujet).

Attention avec l'approche top-down optimisée : Lors de la reconstruction, on doit comparer
DI(i, j)] avec ses voisins D[(i-1, j-1)], D[(i-1, j)] et DI(i, j-1)]. Or, avec l'algorithme top-down
optimisé, certaines de ces valeurs n'ont pas été calculées ! En effet, quand il y a un match,
seul le cas diagonal D[(i-1, j-1)] est exploré, les cas D[(i-1, j)] et D[(i, j-1)] ne sont jamais
calculés et n'existent donc pas dans le dictionnaire.

TD : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

Pour éviter ce probleme, il faut tester les cas diagonaux en priorité (match puis substitution)
avant de tester les cas de suppression et d'insertion. Ainsi, quand une valeur a été obtenue
par un match, on la détecte immédiatement sans jamais essayer d'accéder aux clés
inexistantes.

1. Ecrire une fonction determiner_operation(S1, S$2, D, i, j) quiretourne
I'opération effectuée pour arriver a D[(i, j)]. Cette fonction doit retourner un tuple
(operation, new_i, new_j) oU:

- operation est une chaine décrivant I'opération ("SUPPR X", "INSERT X", "GARDER X",
"SUBST X <-Y")
- new_i et new_j sont les nouveaux indices aprés I'opération

Vérifier : >>> S1 = "ALGORYTME"
>>> S2 = "ALGORITHME"
>>> prec_levenshtein(S1,S2)
2

>>> determiner_operation(S1,S2,D,9,10)
('GARDER E', 8, 9)

>>> determiner_operation(S1,S2,D,7,8)
("INSERT H', 7, 7)

>>> determiner_operation(S1,S2,D,6,6)
('SUBST Y<-I', 5, 5)

2. Ecrire une fonction reconstruire_operations(S1, S2, D) qui retourne la liste des
opérations a effectuer (dans I'ordre) pour transformer S1 en S2.

Vérifier : >>> reconstruire_operations(S1,S2,D)
['GARDER A', 'GARDER L', 'GARDER G', 'GARDER 0', 'GARDER

R', 'SUBST Y<-I', 'GARDER T', 'INSERT H', 'GARDER M',
'GARDER E']

3. Quelle est la complexité temporelle de la reconstruction ?

4. Quelle est la complexité finale {Calcul des valeurs optimales + reconstruction} ?

TD : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

RAPPELS THEORIQUES

Formulation du probleme

Soient deux chaines de caractéres S1 de longueur n et S2 de longueur m. La distance
d'édition (ou distance de Levenshtein) est le nombre minimal d'opérations élémentaires
pour transformer S1 en S2.

Les trois opérations autorisées, chacune de co(t 1, sont I'insertion d'un caractere dans S1, la
suppression d'un caractére de S1 et la substitution d'un caractére de S1 par un autre. Garder
un caractere (match) a un colt nul.

Sous-problémes et notation

On note Djj la distance d'édition minimale entre les i premiers caractéeres de S1 (le préfixe
S1[1..i]) et les j premiers caractéres de S2 (le préfixe S2[1..j]).

Relation de récurrence
Pourtouti e {1..n}etje {1..m}:

Di_1;+1 (cas n°1 : suppression)
Dy, = min Djj_1+1 . et (cas n°3 : insertion)
Di_1-1+ {1, z;m;[;] == Sl (cas n°2 : substitution / match)
Cas de base

Les cas de base sont les suivants :
- Do,j=j:transformer la chaine vide en j caracteres demande j insertions.
- Dio=i:transformer i caractéres en chaine vide demande i suppressions.

Algorithme de reconstruction

Une fois la table des valeurs optimales remplie, on reconstruit la solution en « remontant »
depuis Dn,m jusqu'a Do,o.

Principe : A chaque position (i, j), on détermine quelle opération a permis d'obtenir Di; en
comparant avec les valeurs voisines :

- Si Dij == Di.1j1 ET S1[i] == S2[j] > Match

- SiDij==Diyj1+ 1 - Substitution

- SiDjj==Di1j+ 1 -> Suppression

- SiDjj==Djj1+1 - Insertion

