
TD : PROGRAMMATION DYNAMIQUE – DISTANCE DE LEVENSHTEIN 

1 

TD : PROGRAMMATION DYNAMIQUE 
== DISTANCE DE LEVENSHTEIN == 

 
Remarque : les rappels théoriques sont en dernière page de ce sujet. 

Le fichier source à utiliser pour ce TD est : « TD4 – Levenshtein.py » 
 
Vous développez un mini-correcteur orthographique. Le principe est le suivant : 

- L'utilisateur tape un mot (potentiellement mal orthographié) ; 
- On compare ce mot à chaque mot d'un dictionnaire de mots corrects ; 
- On calcule la distance d'édition (distance de Levenshtein) entre le mot tapé et 

chaque mot du dictionnaire ; 
- On suggère le mot du dictionnaire le plus proche (distance minimale) ; 
- On affiche les opérations de correction pour transformer le mot erroné en mot 

correct. 
 
Exemple : L'utilisateur tape "ALGORYTME". Le correcteur compare ce mot au dictionnaire et 
trouve que "ALGORITHME" est le mot le plus proche (distance = 2). Il suggère alors la 
correction avec les opérations : substituer 'Y' par 'I' et insérer 'H'. 
 
L'objectif de ce TD est d'implémenter les algorithmes de programmation dynamique 
(approches bottom-up et top-down) pour calculer la distance d'édition, trouver le mot le 
plus proche, puis reconstruire la suite d'opérations de correction. Vous utiliserez des 
dictionnaires Python pour mémoriser les résultats des sous-problèmes. 

I) APPROCHE BOTTOM-UP (TABULATION) 

Dans cette partie, vous allez implémenter l'approche bottom-up qui remplit une table de 
tous les sous-problèmes, des plus petits aux plus grands. On utilisera un dictionnaire D pour 
stocker les valeurs D[(i, j)] représentant la distance d'édition entre les i premiers caractères 
de S1 et les j premiers caractères de S2. 
 
Les données sont déjà définies dans le fichier source : 

mot_utilisateur = "camiont" 
dictionnaire = ["camion","camions","canon","cation","canton","camionne"] 
D = {}    # Table de mémoïsation 

 
1. Écrire une fonction initialiser_cas_de_base(S1, S2, D) qui initialise et retourne le 

dictionnaire D avec les cas de base. 
 

Tester : >>> initialiser_cas_de_base("tu","toi",D) 
{(0, 0): 0, (1, 0): 1, (2, 0): 2, (0, 1): 1, (0, 2): 2, 
(0, 3): 3} 

 
2. Écrire une fonction remplir_table(S1, S2, D) qui remplit entièrement la table D en 

utilisant l'équation de récurrence (voir rappels à la fin du sujet). L'ordre de parcours est : 
pour i allant de 1 à n, et pour chaque i, j allant de 1 à m. 

 
 



TD : PROGRAMMATION DYNAMIQUE – DISTANCE DE LEVENSHTEIN 

2 

Vérifier :  S1 = "ALGORYTME" 
S2 = "ALGORITHME" 
D = {} 
D = initialiser_cas_de_base(S1,S2,D) 
D = remplir_table(S1,S2,D) 
AfficheTable(S1,S2,D) 

 

 
 
3. Écrire une fonction distance_levenshtein_bottomup(S1, S2) qui utilise les fonctions 

précédentes pour calculer et retourner la table D et la distance d'édition entre S1 et S2. 
 

Tester :  >>> S1 = "ALGORYTME" 
>>> S2 = "ALGORITHME" 
>>> D, distance = distance_levenshtein_bottomup(S1,S2) 

   >>> print(distance) 
   2 

 
4. Écrire une fonction trouver_mot_proche(mot_utilisateur, dictionnaire) qui 

parcourt tous les mots du dictionnaire, calcule la distance avec le mot de l'utilisateur, et 
retourne le ou les mots les plus proches ainsi que la distance minimale. 

 
Tester :  >>> trouver_mot_proche(mot_utilisateur,dictionnaire) 

(['camion', 'camions'], 1) 
 
5. Combien de sous-problèmes sont calculés dans l'approche bottom-up pour comparer 

deux chaînes de longueurs n et m ? Quelle est la complexité temporelle et spatiale de cet 
algorithme ? 
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II) APPROCHE TOP-DOWN AVEC MÉMOÏSATION 
Dans cette partie, vous allez implémenter l'algorithme récursif avec mémoïsation. L'idée est 
de partir du problème principal D[(n, m)] et de le décomposer en sous-problèmes, en 
mémorisant les résultats pour éviter les calculs redondants. 
 
On utilisera un dictionnaire défini dans le programme principal pour la mémoïsation : D = {} 
 
1. Écrire une fonction récursive rec_levenshtein(S1, S2, D) qui implémente la 

récurrence rappelée à la fin du sujet. Voici un exemple que vous pouvez suivre si vous le 
souhaitez : 

 
D = {} 
def rec_levenshtein(S1,S2,D): 
    n = ... 
    m = ... 
 
    def f_rec(i,j): 
        # Utilise la mémoisation 
        if ... in D: 
            return ... 
 
        # Cas de base 
        if i == 0: 
            D[(i,j)] = ... 
            return ... 
        if j == 0: 
            D[(i,j)] = ... 
            return ... 
 
        # Test si match 
        if ...............: 
            D[(i,j)] = ............ 
            return ......... 
 
        # Sinon, calcule les trois autres possibilités 
        else: 
            V1 = ............... 
            V2 = ............... 
            V3 = ............... 
 
            # Mémoise et retourne la valeur optimale 
            D[(i,j)] = ............... 
            return D[(i,j)] 
 
    distance = f_rec(n,m) 
    return distance 

 
Tester : S1 = "ALGORYTME" 

S2 = "ALGORITHME" 
>>> rec_levenshtein(S1,S2,D) 
2 
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Vérifier la table :  >>> AfficheTable(S1,S2,D) 
 

 
 
2. Comparez les tables obtenues avec les approches bottom-up et top-down (optimisée). 

Pourquoi l'approche top-down optimisée calcule-t-elle moins de sous-problèmes ? Dans 
quel cas cette différence serait-elle plus marquée ? 

 
3. Quelle est la complexité temporelle de l'algorithme top-down avec mémoïsation dans le 

pire cas ? Quelle est la complexité spatiale (dictionnaire + pile d'appels) ? 

III) RECONSTRUCTION DE LA SOLUTION 

Maintenant que nous savons trouver le mot le plus proche et calculer la distance d'édition, 
nous devons expliquer à l'utilisateur comment corriger son mot. Cette étape s'appelle la 
reconstruction de la solution. 
 
La reconstruction consiste à « remonter » dans la table D depuis D[(n, m)] jusqu'à D[(0, 0)] 
pour déterminer, à chaque étape, quelle opération a été effectuée (voir les rappels à la fin 
du sujet). 
 
Attention avec l'approche top-down optimisée : Lors de la reconstruction, on doit comparer 
D[(i, j)] avec ses voisins D[(i-1, j-1)], D[(i-1, j)] et D[(i, j-1)]. Or, avec l'algorithme top-down 
optimisé, certaines de ces valeurs n'ont pas été calculées ! En effet, quand il y a un match, 
seul le cas diagonal D[(i-1, j-1)] est exploré, les cas D[(i-1, j)] et D[(i, j-1)] ne sont jamais 
calculés et n'existent donc pas dans le dictionnaire. 
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Pour éviter ce problème, il faut tester les cas diagonaux en priorité (match puis substitution) 
avant de tester les cas de suppression et d'insertion. Ainsi, quand une valeur a été obtenue 
par un match, on la détecte immédiatement sans jamais essayer d'accéder aux clés 
inexistantes. 
 
1. Écrire une fonction determiner_operation(S1, S2, D, i, j) qui retourne 

l'opération effectuée pour arriver à D[(i, j)]. Cette fonction doit retourner un tuple 
(operation, new_i, new_j) où : 
- operation est une chaîne décrivant l'opération ("SUPPR X", "INSERT X", "GARDER X", 

"SUBST X <- Y") 
- new_i et new_j sont les nouveaux indices après l'opération 

 
Vérifier :  >>> S1 = "ALGORYTME" 

>>> S2 = "ALGORITHME" 

>>> rec_levenshtein(S1,S2) 
2 

>>> determiner_operation(S1,S2,D,9,10) 
('GARDER E', 8, 9) 

>>> determiner_operation(S1,S2,D,7,8) 
('INSERT H', 7, 7) 

>>> determiner_operation(S1,S2,D,6,6) 
('SUBST Y<-I', 5, 5) 

 
2. Écrire une fonction reconstruire_operations(S1, S2, D) qui retourne la liste des 

opérations à effectuer (dans l’ordre) pour transformer S1 en S2.  
 

Vérifier :  >>> reconstruire_operations(S1,S2,D) 
['GARDER A', 'GARDER L', 'GARDER G', 'GARDER O', 'GARDER 
R', 'SUBST Y<-I', 'GARDER T', 'INSERT H', 'GARDER M', 
'GARDER E'] 

 
3. Quelle est la complexité temporelle de la reconstruction ? 
 
4. Quelle est la complexité finale {Calcul des valeurs optimales + reconstruction} ? 
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RAPPELS THÉORIQUES 

 
Formulation du problème 

Soient deux chaînes de caractères S1 de longueur n et S2 de longueur m. La distance 
d'édition (ou distance de Levenshtein) est le nombre minimal d'opérations élémentaires 
pour transformer S1 en S2. 
 
Les trois opérations autorisées, chacune de coût 1, sont l’insertion d'un caractère dans S1, la 
suppression d'un caractère de S1 et la substitution d'un caractère de S1 par un autre. Garder 
un caractère (match) a un coût nul. 
 
Sous-problèmes et notation 

On note Di,j la distance d'édition minimale entre les i premiers caractères de S1 (le préfixe 
S1[1..i]) et les j premiers caractères de S2 (le préfixe S2[1..j]). 
 
Relation de récurrence 

Pour tout i  {1..n} et j  {1..m} : 

 

𝐷𝑖,𝑗 = 𝑚𝑖𝑛

{
 

 
𝐷𝑖−1,𝑗 + 1   (𝑐𝑎𝑠 𝑛°1 ∶  𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐷𝑖,𝑗−1 + 1 (𝑐𝑎𝑠 𝑛°3 ∶  𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛)

𝐷𝑖−1,𝑗−1 + {
0, 𝑠𝑖 𝑆1[𝑖] == 𝑆2[𝑗]
1, 𝑠𝑖𝑛𝑜𝑛

 (𝑐𝑎𝑠 𝑛°2 ∶  𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 / 𝑚𝑎𝑡𝑐ℎ)

 

 
Cas de base 

Les cas de base sont les suivants : 
- D0, j = j : transformer la chaîne vide en j caractères demande j insertions. 
- Di,0 = i : transformer i caractères en chaîne vide demande i suppressions. 

 
Algorithme de reconstruction 

Une fois la table des valeurs optimales remplie, on reconstruit la solution en « remontant » 
depuis Dn,m jusqu'à D0,0. 
 
Principe : À chaque position (i, j), on détermine quelle opération a permis d'obtenir Di,j en 
comparant avec les valeurs voisines : 

- Si Di,j == Di-1,j-1 ET S1[i] == S2[j] → Match 
- Si Di,j == Di-1,j-1 + 1 → Substitution 
- Si Di,j == Di-1,j + 1 → Suppression 
- Si Di,j == Di,j-1 + 1 → Insertion 

 


